Chapter 7: Similarity

What I Need to Know	Example			
6.1 Properties of Polygons				
Classify polygons based on their angles and sides.	Number of Sides Name of Polygon 3			
Determine if the polygon is regular, irregular, concave, or convex.				
Calculate the sum of the interior angles of a polygon.	Find the sum of the interior angles of a regular convex 15-gon.			
Calculate the sum of the exterior angles of a polygon.	Find the sum of the exterior angles of a regular convex 15-gon			
What I Need to Know	Example			
	7.1 Ratios in Similar Polygons			
Determine if polygons are similar and write a similarity statement.	Determine if polygons are similar and write a similarity statement. 75 45 24 N 18 S			

What I Need to Know	Example
	7.2 Ratio and Proportion
Write and Simplify Ratios and Proportions.	Solve for x. $\frac{7}{x+4} = \frac{8}{x}$
,	
Identify the postulate used to show triangles are similar. Find the side lengths of similar triangles.	Determine if the polygons are similar. If so, state the theorem and similarity statement. F 18 a b b 24 c a b 24 c b 24 c c a b c c a b c c a b c c a b c c a b c c a b c c a b c c c a b c c c c c c c c
7.4.4	
7.4 A	ppiying Properties of Similar Triangles
Use the Triangle Proportionality Theorem to solve for missing segments.	Solve for side LS. $9 \xrightarrow{10}{15} \xrightarrow{M}{8} \xrightarrow{S}{15}$

Chapter 9: Transformations

What I Need to Know	Example	
9.1 Reflections		
Identify a Reflection	Is it a reflection? If so, draw the line of reflection.	
Reflect a figure over the y-axis	Reflect the points P (1, 5), Q (3, 0), R (2, -2) over the y-axis.	
Reflect a figure over the x-axis	Reflect the points P (1, 5), Q (3, 0), R (2, -2) over the x-axis.	
Reflect a figure over y=x	Reflect the points P (1, 5), Q (3, 0), R (2, -2) over $y=x$.	
	9.2 Translations	
Identify a translation	Is it a translation?	
Translate a figure along a vector.		

Find the translation vector given the pre-image and image.	Translate the points P (1, 5), Q (3, 0), R (2, -2) along the vector <-3,
What I Need to Know	Example
	9.3 Rotations
Identify a rotation	
Rotate a figure 90º about the origin.	Rotate the points P (1, 5), Q (3, 0), R (2, -2) 90° about the origin.
Rotate a figure 180º about the origin.	Rotate the points P (1, 5), Q (3, 0), R (2, -2) 180° about the origin.

Dilate a triangle in the coordinate plane with a given scale factor.	Triangle <i>EFG</i> has vertices <i>E</i> (0, 0), <i>F</i> (3, 6), and <i>G</i> (3, -3). Find the coordinates of the image, after a dilation about the point (0,-3) with a scale factor $\frac{1}{3}$. How does this differ from having a scale								
	factor of 3?					F	\square	\mp	\square
						+	\square	+	+
						F	\square	Ŧ	+
		←				+	\square	+	\rightarrow
						+	\square	—	\square
		\square	_	\square		F	\square	\mp	\square
					\mathbf{V}	+	\square	+	+
					 . 		<u> </u>		

Chapter 8: Right Triangles

What I Need to Know	Example	
5.7 Pythagorean Theorem		
Use the Pythagorean theorem and its converse to solve problems.	Find the value of x. $x - 1 \sqrt{x}$	
ldentify and use the Pythagorean Triples to solve triangles.	Find the value of x.	
Use the Pythagorean Inequality Theorem to classify triangles.	Tell if the measures can be side lengths of a right triangle. If so, classify the triangle as acute, obtuse, or right. 7, 10, and 12	

What I Need to Know	Example			
8.4 Angle of Elevation & Depression				
Solve real world problems using trigonometry.	The Seattle Space Needle casts a 67-meter shadow. If the angle of elevation from the tip of the shadow to the top of the Space Needle is 70°, how tall is the Space Needle? Round to the nearest meter.			

Chapter 10: Perimeter & Area

Describe the effects of changing the area.	A square has a side length of 5 cm. If the area is tripled, what happens to the side length?

Chapter 11: Surface Area & Volume

What I Need to Know	Example
Surface Area of I	Prisms, Pyramids, Cylinders, Cones, and Spheres
Find the lateral and total surface area of a prism.	Find the total surface area.
Find the lateral and total surface area of a pyramid.	Find the total surface area of the regular pyramid.
Find the lateral and total surface area of a cylinder.	3 cm 10 cm

Find the lateral and total surface area of a cone.	12 in 9 in
Find the surface area of a sphere.	
Volume c	of Prisms, Pyramids, Cylinders, and Cones
Find the volume of a prism.	18 mm 11 mm 15 mm 15 mm
Find the volume of a pyramid.	A rectangular pyramid with length 11 m, width 18m, and height 23 m.
Find the volume of a cylinder.	5 0 in 14 in

Find the volume of a cone.	20
Find the volume of a sphere.	• 12 ft
Surface	Area & Volume of a Composite Figure
Find the surface area and volume of composite figure.	5 cm 5 cm 10 cm.

Chapter 12: Circles

What I Need to Know	Example
	12.1 Lines that Intersect Circles
Basic Vocab	Name the following:
	Circle: V
	Radius: Q
	Diameter:
	Chord:
	Secant: R
	Tangent:
	Point of Tangency:

