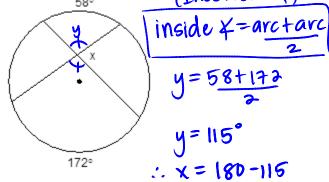
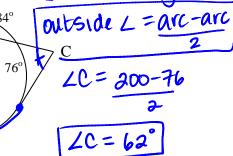

12.4 & 12.5 Angles in a Circle

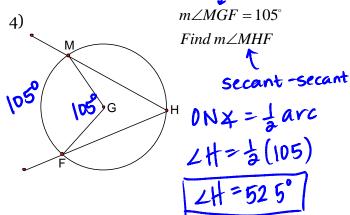

Location of Vertex	Туре	Example	Measure of the \angle
CENTER OF CIRCLE	Central X	radius mo radius	Central L = arc
ON the CIRCLE	inscribed 4	chord	$on x = \frac{1}{2}arc$
	chord - tangent *	chord tangent	
INSIDE the CIRCLE	chord-chord	chord	inside $z = \frac{arctarc}{z}$
OUTSIDE the CIRCLE	Secant-secant X	secont .	
	Secant-tangent *		outside L = arc-arc 2
	tangent-tangent	tangent	

Mixed Practice: Practice makes progress! Find x unless told otherwise.

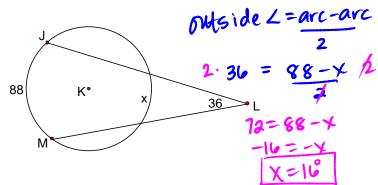
2) Find the value of
$$x$$
 (Inscribed 4)



3) Find $m \angle C$


360-184+76)

(Secant-tangent X


X=65°

1 Central 4

5) Find the value of x. Secant-gecant 4

7) $\angle TSU = 30^{\circ}$ Find: $\angle TRU$ * Two inscribed $\angle Is$ that open up to the Same arc are = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1= 1

Find x and y \bigstar A quadrilateral inscribed (all x's on the \odot) in a \odot has opp x's supplementary 3x=90 2y-3+y+5=180 3y+3=180 3y+3=180 3y=178