15. Design The refrigerator, stove, and sink in a kitchen are at the vertices of a path called the work triangle.
a. If the angle at the sink is the largest, which side of the work triangle will be the longest?
b. The designer wants the longest side of this triangle to be 9 feet long. Can the lengths of the other sides be 5 feet and 4 feet? Explain.

a) The length from the findge to the stove
b) $4+5 \ngtr 9$ No, because the sum of 2 sides is not greater than
16. Write the angles in order from smallest to largest.

17. Write the sides in order from shortest to longest.

$$
\overline{S R} \angle \overline{S T} \angle \overline{R T}
$$

Tell whether a triangle can have sides with the given lengths. Explain.
20. $6,10,15$

$$
\begin{aligned}
6+10 & >15 \\
16 & >15 v
\end{aligned}
$$

YES! The sum of the 2 smaller
Sides is greater than the $3^{\text {rd }}$ side
The lengths of two sides of a triangle are given. Find the range of possible lengths for the third side.
27. $28 \mathrm{~km}, 23 \mathrm{~km}$

$5 \mathrm{~km}<x<51 \mathrm{~km}$
28. $9.2 \mathrm{~cm}, 3.8 \mathrm{~cm}$

$$
\begin{aligned}
& 9.2-3.8<x<9.2+3.8 \\
& 5.4 \mathrm{~cm}<x<13
\end{aligned}
$$

In each set of statements, name the two that contradict each other.
38. $\triangle / K L$ is isosceles with base $\overline{I L}$. In $\triangle I K L, \mathrm{~m} \angle K>\mathrm{m} \angle J \bullet$ In $\triangle J K L, J K>L K^{\circ}$

If $\triangle J K L$ is is os $w /$ base \bar{J}, then $\overline{J K}$ and LK are \cong, bIc they are the legs of the Δ !

48. $\mathrm{m} \angle A B E>\mathrm{m} \angle B E A$
49. $\mathrm{m} \angle C B E>\mathrm{m} \angle C E B$
50. $\mathrm{m} \angle D C E=\mathrm{m} \angle D E C$
51. $\mathrm{m} \angle D C E<\mathrm{m} \angle C D E$
52. $\mathrm{m} \angle A B E<\mathrm{m} \angle E A B$
53. $\mathrm{m} \angle E B C \equiv \mathrm{~m} \angle E C B$

