Page 348-351 #15, 18-21, 27-28, 38, 48-54

- 15. Design The refrigerator, stove, and sink in a kitchen are at the vertices of a path called the work triangle.
 - a. If the angle at the sink is the largest, which side of the work triangle will be the longest?
 - b. The designer wants the longest side of this triangle to be 9 feet long. Can the lengths of the other sides be 5 feet and 4 feet? Explain.

a) The length from the fridge to the Stove

- b) 4+5>9 No, because the sum of 2 sides is not greater than
- Write the angles in order from smallest to largest.

Write the sides in order from shortest to longest.

Tell whether a triangle can have sides with the given lengths. Explain.

YES! The sum of the 2 smaller Sides is greater than the 3 dside NO! The sum of 2 smaller Sides is not greater than 3rd side.

The lengths of two sides of a triangle are given. Find the range of possible lengths for the third side.

27. 28 km, 23 km

28. 9.2 cm, 3.8 cm

$$9.2 - 3.8 < x < 9.2 + 3.8$$

In each set of statements, name the two that contradict each other.

38. $\triangle JKL$ is isosceles with base \overline{JL} . In $\triangle JKL$, m $\angle K > m\angle J$ •

In $\triangle JKL$, JK > LK

If ΔJKL Is isos w/ base JL, then JK and IK are \cong , blc they are the legs of the Δ !

48. m∠ABE > m∠BEA

49. m∠*CBE* > m∠*CEB*

50. m∠DCE ■ m∠DEC

51. m∠DCE < m∠CDE

52. m∠ABE < m∠EAB

53. m∠EBC m∠ECB

