Who uses this?

Race car designers can use a parallelogram-shaped linkage to keep the wheels of the car vertical on uneven surfaces. (See Example 1.)

Any polygon with four sides is a quadrilateral. However, some quadrilaterals have special properties. These special

name of a parallelogram, you use the symbol \square .

Theorem 6-2-1 Properties of Parallelograms THEOREM **HYPOTHESIS** CONCLUSION If a quadrilateral is a AB ≅ CD parallelogram, then its opposite sides are congruent. $\overline{BC}\cong \overline{DA}$

Theorem 6-2-1

 $(\square \to opp. sides \cong)$

Given: JKLM is a parallelogram.

Prove: $\overline{JK} \cong \overline{LM}, \overline{KL} \cong \overline{MJ}$

Proof:

Statements	Reasons	
1. JKLM is a parallelogram.	1. Given	
2. $\overline{JK} \parallel \overline{LM}$, $\overline{KL} \parallel \overline{MJ}$	2. Def. of \square	
3. ∠1 ≅ ∠2, ∠3 ≅ ∠4	3. Alt. Int. & Thm.	
4. <i>JL</i> ≅ <i>JL</i>	4. Reflex. Prop. of ≅	
 △JKL ≅ △LMJ 	5. ASA Steps 3, 4	
6. $\overline{JK} \cong \overline{LM}, \overline{KL} \cong \overline{MJ}$	6. CPCTC	

You will prove Theorems 6-2-3 and 6-2-4 in Exercises 45 and 44.

Racing Application

The diagram shows the parallelogram-shaped linkage that joins the frame of a race car to one wheel of the car. In PQRS, QR = 48 cm, RT = 30 cm, and $m \angle QPS = 73^{\circ}$. Find each measure.

 $\overline{PS} \cong \overline{QR}$

 $\square \rightarrow opp. sides \cong$

PS = QRDef. of \cong segs.

PS = 48 cmSubstitute 48 for QR.

B m∠PQR

 $m\angle PQR + m\angle QPS = 180^{\circ}$ $\square \rightarrow cons. \land supp.$

> $m\angle PQR + 73 = 180$ Substitute 73 for mZQPS.

 $m\angle PQR = 107^{\circ}$ Subtract 73 from both sides.

C PT

 $\overline{PT} \cong \overline{RT}$

□ → diags. bisect each other

PT = RTDef. of \cong segs,

PT = 30 cmSubstitute 30 for RT.

In $\square KLMN$, LM = 28 in.,

THE REMANDER LANGE 26 in., and make $LN = 74^{\circ}$.

Find each measure.

la. KN

1b. m∠NML

1c. LO

Using Properties of Parallelograms to Find Measures

X Algebra

ABCD is a parallelogram. Find each measure.

$$AD = \overline{AD} \cong \overline{BC}$$

$$\square \rightarrow opp. sides \cong$$

Def. of $\cong seqs$.

$$AD = BC$$

$$7x = 5x + 19$$
 Substitute the given values.

$$2x = 19$$

$$x = 9.5$$

$$x = 9.5$$
 Divide both sides by 2.
 $AD = 7x = 7(9.5) = 66.5$

B m∠B

$$m\angle A + m\angle B = 180^{\circ}$$
 $\square \rightarrow cons. \triangle supp.$
 $(10y - 1) + (6y + 5) = 180$ Substitute the given values.

$$(10y-1) + (6y+5) = 180$$

 $16y+4 = 180$

$$16y=176$$

$$y = 11$$

$$m\angle B = (6y + 5)^{\circ} = [6(11) + 5]^{\circ} = 71^{\circ}$$

EFGH is a parallelogram. Find each measure.

EXAMPLE 3

Remember!

When you are

the name ABCD gives the order of

the vertices.

drawing a figure in

the coordinate plane,

Parallelograms in the Coordinate Plane

Three vertices of $\square ABCD$ are A(1, -2), B(-2, 3), and D(5, -1). Find the coordinates of vertex C. Since ABCD is a parallelogram, both pairs of opposite sides must be parallel.

Step 1 Graph the given points.

Step 2 Find the slope of \overline{AB} by counting the units from A to B.

The rise from -2 to 3 is 5.

The run from 1 to -2 is -3.

Step 3 Start at D and count the same number of units.

A rise of 5 from -1 is 4.

A run of -3 from 5 is 2. Label (2, 4) as vertex C.

Step 4 Use the slope formula to verify that $\overline{BC} \parallel \overline{AD}$.

slope of
$$\overline{BC} = \frac{4-3}{2-(-2)} = \frac{1}{4}$$

slope of
$$\overline{AD} = \frac{-1 - (-2)}{5 - 1} = \frac{1}{4}$$

The coordinates of vertex C are (2, 4).

3. Three vertices of $\square PQRS$ are P(-3, -2), Q(-1, 4), and S(5, 0). Find the coordinates of vertex \hat{R} .

Using Properties of Parallelograms in a Proof

Write a two-column proof.

A Theorem 6-2-2

Given: ABCD is a parallelogram.

Prove: $\angle BAD \cong \angle DCB$, $\angle ABC \cong \angle CDA$

Proof:

Statements	Reasons
1. ABCD is a parallelogram.	1. Given
2. $\overline{AB} \cong \overline{CD}$, $\overline{DA} \cong \overline{BC}$	2. □ → opp. sides ≅
3. $\overline{BD} \cong \overline{BD}$	3. Reflex. Prop. of ≅
4. $\triangle BAD \cong \triangle DCB$	4. SSS Steps 2, 3
 ∠BAD ≅ ∠DCB 	5. CPCTC
6. $\overline{AC} \cong \overline{AC}$	6. Reflex. Prop. of ≅
 △ABC ≅ △CDA 	7. SSS Steps 2, 6
 ∠ABC ≅ ∠CDA 	8. CPCTC

Given: GHJN and JKLM are parallelograms. H and M are collinear. N and K are collinear.

Prove: $\angle G \cong \angle L$

Proof:

Statements	Reasons
1. GHJN and JKLM are parallelograms.	1. Given
2. $\angle HJN \cong \angle G$, $\angle MJK \cong \angle L$	2. □ → opp. ≜ ≅
∠HJN ≅ ∠MJK	3. Vert. A. Thm.
4. ∠G ≅ ∠L	4. Trans. Prop. of ≅

4. Use the figure in Example 4B to write a two-column proof. Given: *GHJN* and *JKLM* are parallelograms.

Using Properties of Parallelograms in a Proof

Write a two-column proof.

A Theorem 6-2-2

Given: ABCD is a parallelogram.

Prove: $\angle BAD \cong \angle DCB$, $\angle ABC \cong \angle CDA$

Proof:

Statements	Reasons
1. ABCD is a parallelogram.	1. Given
2. $\overline{AB} \cong \overline{CD}$, $\overline{DA} \cong \overline{BC}$	2. □ → opp. sides ≅
3. $\overline{BD} \cong \overline{BD}$	3. Reflex. Prop. of ≅
4. $\triangle BAD \cong \triangle DCB$	4. SSS Steps 2, 3
 ∠BAD ≅ ∠DCB 	5. CPCTC
6. $\overline{AC} \cong \overline{AC}$	6. Reflex. Prop. of ≅
 △ABC ≅ △CDA 	7. SSS Steps 2, 6
 ∠ABC ≅ ∠CDA 	8. CPCTC

Given: GHJN and JKLM are parallelograms. H and M are collinear. N and K are collinear.

Prove: $\angle G \cong \angle L$

Proof:

Statements	Reasons
1. GHJN and JKLM are parallelograms.	1. Given
2. $\angle HJN \cong \angle G$, $\angle MJK \cong \angle L$	2. □ → opp. ≜ ≅
∠HJN ≅ ∠MJK	3. Vert. A. Thm.
4. ∠G ≅ ∠L	4. Trans. Prop. of ≅

4. Use the figure in Example 4B to write a two-column proof. Given: *GHJN* and *JKLM* are parallelograms.