Find the coordinates of the midpoint of each segment.
2. $\overline{A B}$ with endpoints $A(4,-6)$ and $B(-4,2)$

$$
\left(\frac{4+-4}{2}, \frac{-6+2}{2}\right)=(0,-2)
$$

4. M is the midpoint of $\overline{L N}$. L has coordinates $(-3,-1)$, and M has coordinates $(0,1)$. Find the coordinates of N.

$$
\begin{array}{rr}
-\frac{3+x}{2}=0 & \frac{-1+y}{2}=1 \\
-3+x=0 & -1+y=2 \tag{3,3}\\
x=3 & y=3
\end{array}
$$

Multi-Step Find the length of the given segments and determine if they are congruent.
6. $\overline{K K}$ and $\overline{F G}$

$$
\begin{aligned}
\overline{J K}= & \sqrt{(-4-1)^{2}+(0--2)^{2}} \\
& \sqrt{(-5)^{2}+(2)^{2}} \\
& \sqrt{25+4}=\sqrt{29} \\
\overline{F G}= & \sqrt{(5-3)^{2}+(4--1)^{2}} \\
\bar{F}= & \sqrt{(2)^{2}+(5)^{2}}=\sqrt{4+25}=\sqrt{29}
\end{aligned}
$$

$\overline{J K} \cong \overline{F G}$
22. Multi-Step Use the Distance Formula to order $\overline{A B}, \overline{C D}$, and $\overline{E F}$ from shortest to longest.

$$
\begin{aligned}
\overline{A B}= & \sqrt{(-4-1)^{2}+(2-4)^{2}} \\
& \sqrt{(-5)^{2}+(-2)^{2}}=\sqrt{29} \\
\overline{C D}= & \sqrt{(2-4)^{2}+(5-1)^{2}} \\
& \sqrt{(-2)^{2}+(4)^{2}}=\sqrt{4+16}=\sqrt{20} \\
\overline{C F}= & \sqrt{(-2-3)^{2}+(-2+1)^{2}} \\
& \sqrt{(-5)^{2}+(-1)^{2}}=\sqrt{20}
\end{aligned}
$$

24. X has coordinates $(a, 3 a)$, and Y has coordinates $(-5 a, 0)$. Find the coordinates of the midpoint of $\overline{X Y}$.

$$
\begin{array}{cc}
\frac{a+-5 a}{2} & \frac{3 a+0}{2} \\
\frac{-4 a}{2} & \frac{3 a}{2} \\
(-2 a, 1.5 a)
\end{array}
$$

29. Critical Thinking Give an example of a line segment with midpoint $(0,0)$.

30. Write About It Explain why the Distance Formula is not needed to find the distance between two points that lie on a horizontal or a vertical line.
31. Find the distance, to the nearest tenth, between the midpoints of $\overline{L M}$ and $\overline{J K}$.
(F) 1.8
(H) 4.0
(G) 3.6
(J) 5.3

$$
\begin{aligned}
& \overline{L M}=\left(\frac{1+4}{2}, \frac{3+-1}{2}\right)=(2.5,1) \\
& \overline{J K}=\left(\frac{1+4}{2}, \frac{-2-3}{2}\right)=(2.5,-2.5)
\end{aligned}
$$

Distance $\sqrt{(2.5-2.5)^{2}+(1--2.5)^{2}}=\sqrt{ }$
$(0)^{2}+(3.5)^{2}$
$\sqrt{12.25}=3.5$

