Find the indicated for each of the following figures.

$$
\begin{aligned}
& L S A=p \cdot h \\
& =(5+5+6+6) 10 \\
& =(22) 10 \\
& =220 \mathrm{~cm}^{2} \\
& T S A=L S A+2 \cdot A_{B A S C} \\
& =220+2(5 \cdot 6) \\
& =220+60 \\
& =280 \mathrm{~cm}^{2} \\
& V=A_{\text {Base }} \cdot h \\
& =30 \cdot 10 \\
& \begin{array}{l}
=30 \cdot 10 \\
=300
\end{array} \\
& L S A=p \cdot h \\
& =18 \pi \cdot 4 \\
& =72 \pi \\
& T_{S A}=L S A+2 \cdot A_{B A S C} \\
& =72 \pi+2(81 \pi) \\
& =234 \pi \\
& V=A_{B a s e} \cdot h \\
& =81 \pi \cdot 4 \\
& =324 \pi \\
& \text { Lateral Area }=\quad 220 \mathrm{~cm}^{2} \\
& \text { Total Area }=\quad 280 \mathrm{~cm}^{2} \\
& \text { Volume }=\quad 300 \mathrm{~cm}^{3} \\
& \text { Parallel Cross Section: Rectangle } \\
& \text { Lateral Area }=72 \pi \mathrm{ln}^{2} \\
& \text { Total Area }=234 \pi \ln ^{2} \\
& \text { Volume }=\quad 324 \pi \mathrm{in}^{3} \\
& \text { Parallel Cross Section:_CIrde }
\end{aligned}
$$

3.

$$
\begin{aligned}
& \text { aSA }=p \cdot h \\
& =(6+6+6) \cdot 12 \\
& =216 \\
& T S A=L S A+2 \cdot A_{\text {Base }} \\
& =216+2\left(\frac{6^{2} \sqrt{3}}{4}\right) \text { Volume }=\quad 108 \sqrt{3} \mathrm{~cm}^{3} \\
& =216+18 \sqrt{3} \\
& V=A_{\text {Base }} \cdot h \\
& =9 \sqrt{3} \cdot 12 \\
& =108 \sqrt{3} \\
& \text { Parallel Cross Section: triangle }
\end{aligned}
$$

4.

$$
\begin{aligned}
L S A & =p \cdot h \\
& =6 \pi \cdot 8 \\
& =48 \pi
\end{aligned}
$$

\qquad

Total Area = \qquad
TSA $=$ LS $+2 \cdot$ ABase $^{\text {B }}$
$=48 \pi+2(9 \pi)$
Volume $=$ \qquad

$$
=66 \pi
$$

$V=A_{\text {Base }} \cdot h$
$=9 \pi \cdot 8$
$=72 \pi$
5.

$$
\begin{aligned}
L S A & =\frac{p \cdot l}{2} \\
& =\frac{16 \pi \cdot 10}{2} \\
& =80 \pi \\
T S A & =L S A+2 \cdot A_{\text {Base }} \\
& =80 \pi+2(64 \pi) \\
& =208 \pi
\end{aligned}
$$

$$
\begin{aligned}
V & =\frac{A_{\text {Base }} \cdot h}{3} \\
& =\frac{64 \pi \cdot 8}{3}=\frac{512 \pi}{3}
\end{aligned}
$$

6.

$$
\begin{aligned}
L S A & =p \cdot h \\
& =(9+12+15) 10 \\
& =(36) 10 \\
& =360 \\
T S A & =L S A+2 \cdot A_{\text {BaSe }} \\
& =360+2\left(\frac{9.12}{2}\right) \\
& =468 \\
V & =A_{\text {Base }} \cdot h \\
& =54 \cdot 10 \\
& =540
\end{aligned}
$$

7. A right cylindrical tank is 8 ft in diameter and 20 ft tall. How many gallons of paint are needed to paint the tank if one gallon covers 200 sq ft ?
(note: you are painting the top and the bottom) * TSA*

$$
\begin{aligned}
T S A & =L S A+2 \cdot A_{\text {Base }} \\
& =p \cdot h+2 \pi r^{2} \\
& =8 \pi \cdot 20+2 \pi(4)^{2} \\
& =160 \pi+32 \pi \\
& =192 \pi \mathrm{ft}^{2} \text { or } \approx 603.19 \mathrm{ft}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\text { gal }}{\operatorname{sqf}} \frac{1}{200} & =\frac{x}{192 \pi} \\
x & =3.02
\end{aligned}
$$

We would need 4 gal to paint the tank.
8. If a sphere has a surface area of $36 \pi \mathrm{~cm}^{2}$, find the volume of the sphere.

Volume $=36 \pi \mathrm{~cm}^{3}$

$$
\begin{array}{rlrl}
T S A & =4 \pi r^{2} & V & =\frac{4 \pi r^{3}}{3} \\
36 \pi & =4 \pi r^{2} & & =\frac{4 \pi(3)^{3}}{3} \\
9 & =r^{2} & & =36 \pi
\end{array}
$$

\qquad
9.

$$
\begin{aligned}
& T A_{H G}=2 \pi r^{2} \\
&=2 \pi(7)^{2} \\
&=98 \pi \\
& 13 \mathrm{~cm} \\
& \text { LSACYL }=p \cdot h \\
&=14 \pi \cdot 6 \\
&=84 \pi \\
& A_{\text {Base }}=49 \pi
\end{aligned}
$$

$$
T S A=98 \pi+84 \pi+49 \pi
$$

10.

$$
T S A=231 \pi
$$

$$
L S A_{p y r}=\frac{p \cdot \ell}{2}
$$

$$
\begin{aligned}
& =\frac{32.5}{2} \\
& =80
\end{aligned}
$$

$$
\text { LSAprism }=p \cdot h
$$

$$
=32.4
$$

$$
=128
$$

$$
A_{\text {Base }}=64
$$

$$
T S A=80+128+64
$$

$$
\begin{gathered}
T S A=272
\end{gathered}
$$

$$
\begin{aligned}
& \quad \begin{aligned}
& \quad \text { Surface Area }=272 u^{2} \\
&=\frac{64 \cdot 2}{3} \\
&=64 \\
& V_{\text {phr }}=A_{\text {Base }} \cdot h \\
& V_{\text {prism }}=A_{\text {Base }} \cdot h \\
&=64 \cdot 4 \\
&=256 \\
& V=64+256 \\
& V=320
\end{aligned}
\end{aligned}
$$

11. The volume of a regular square pyramid is $1805 \mathrm{~cm}^{3}$. Its height is 15 cm . Find the base edge of the pyramid.

Base edge $=19 \mathrm{~cm}$

$$
\begin{gathered}
V=\frac{A_{\text {Base }} \cdot h}{3} \\
1805=\frac{s^{2} \cdot 15}{3} \\
1805=5 s^{2} \\
361=s^{2} \\
19=s
\end{gathered}
$$

12. The surface area of a right circular cone is $728 \pi \mathrm{~cm}^{2}$ and the diameter is 26 cm . Find the slant height of the cone.

$$
\begin{aligned}
& T S A=L S A+A_{B A} \text { Se } \\
&=\frac{p \cdot l}{2}+\pi r^{2} \\
& 728 \pi=\frac{26 \pi \cdot l}{2}+\pi(13)^{2} \\
& 728 \pi=13 \pi l+169 \pi \\
& 559 \pi=13 \pi \cdot l \rightarrow l=43
\end{aligned}
$$

Slant height $=$ \qquad
13. Lisa needs to store 8 boxes while she is moving. Each box is a cube with edge length 3 feet. A storage facility charges $\$ 0.75$ for every cubic
13.
 foot of storage per month. Find the amount of money Lisa will pay to store her boxes for one month.

$$
\begin{aligned}
V & =A_{\text {Base }} \cdot h \\
& =(3 \cdot 3) \cdot 3 \\
& =27 \mathrm{ft}^{3} \times \$.75=\$ 20.25 \times 8 \text { boxes }=\$ 162
\end{aligned}
$$

14. Find the total surface area and volume of a regular hexagonal prism Surface Area $=(900+300 \sqrt{3}) u^{2}$ with a base edge of 10 and a height of 15 .

$$
\begin{aligned}
T S A & =L S A+2 \cdot A \text { Base } \\
& =p \cdot h+2\left(\frac{a \cdot p}{2}\right) \\
& =(10 \cdot 6) \cdot 15+2\left(\frac{5 \sqrt{3} 60}{2}\right) \\
& =900+300 \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
V & =A_{\text {Base }} \cdot h \\
& =150 \sqrt{3} \cdot 15 \\
& =2,250 \sqrt{3}
\end{aligned}
$$

$$
\text { Volume }=\quad 2,250 \sqrt{3} u^{3}
$$

15. What would happen to the volume of a cone if the height were doubled?

the volume would also
 double

16. What would happen to the volume of a prism of the length, width and height were tripled?
the volume would be multiplied by 27
17. A right cylindrical water tank 18 ft in diameter contains water to a depth of 8 ft . What volume of water must be added to raise the water level to 12 ft ? \qquad

$$
\begin{aligned}
& \begin{array}{rl|r}
V=A_{\text {Base }} \cdot h & V=A_{\text {Base }} \cdot h \\
& =81 \pi \cdot 8 & \\
& =81 \pi \cdot 12 \\
& =948 \pi &
\end{array} \\
& 972 \pi-648 \pi
\end{aligned}
$$

