Simplifying Radicals: We have to rewrite square roots to be in simplest form just like we have to reduce fractions.
Sometimes they simplify just to an integer, while other times they reduce into a number and a square root. In order to do It this, it is usually easier to look for perfect squares. Perfect squares are numbers like: $1(1 \times 1), 4(2 \times 2), 9(3 \times 3)$.

Directions: Please list the first 15 perfect squares.

Directions: Simplify the following radicals: (no decimals)
$\sqrt{36}$
a perfect square!
$\sqrt{16}$
$\sqrt{49}$
$\sqrt{121}$
11
$\sqrt{196}$
14

Directions... Take it up a Notch! Simplify the following radicals. (no decimals)

$3 \cdot 2 \sqrt{2}$
$6.6 \sqrt{2}$

RIGHT TRIANGLE ANATOMY

$\left.\begin{array}{l}a=\operatorname{leg} \\ b=\operatorname{leg}\end{array}\right\}$ can be switched!
C= hypotenuse - always opposite $90^{\circ} \mathrm{L}$
We can use the Pythagorean Theorem to find a missing side length in a right triangle when we already know two side lengths. In a right triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse.

http://www.mathsisfun.com/pythagoras.html

Visually this can be seen as...

Ex 1: Find the value of \bar{x}. Le eave answer as reduced radical.

a

Algebraically this can be written as...

$$
\begin{array}{r}
a^{2}+b^{2}=c^{2} \\
3^{2}+4^{2}=5^{2} \\
9+16=25 \\
25=25 \\
\text { woo hoo! }
\end{array}
$$

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& x^{2}+7^{2}=11^{2} \\
& x^{2}+49=121 \\
& x^{2}=72 \\
& x=\sqrt{72} \\
& \text { (a) } 8 \\
& x=\text { (4) (2) }
\end{aligned}
$$

Ex 3: Find the value of x.
a

Ex 4: Find the value of x. Leave answer as reduced radical.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 9^{2}+15^{2}=c^{2}
\end{aligned}
$$

$$
81+225=c^{2}
$$

$$
306=c^{2}
$$

$$
\sqrt{306}=c
$$

$$
\text { (9) } 34
$$

$$
\sqrt{9}-2 \cdot 17=c
$$

Ex 6: Find the value of x.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 5^{2}+(x-1)^{2}=x^{2} \\
& 25+(x-1)(x-1)=x^{2} \\
& 25+x y^{2}-2 x+1=x^{2}
\end{aligned}
$$

$$
26-2 x=0
$$

$$
26=2 x
$$

Check: $\begin{aligned} a & =5 \\ b & =12 \\ c & =13\end{aligned}$

$$
13=x
$$

$$
5^{2}+12^{2} ? 13^{2}
$$

Ex 7: Patrick needed to paint the windowsill. He placed a 10 foot ladder 3 feet away from the wall. Will the ladder reach the windowsill if it is 9.8 feet above the ground? Why or why not? (round to the nearest tenth)

The Ladder will be just short of reaching the window since the Ladder will reach up to 9.5 ft and the windowsill 159.8 ft .

Ex 8: Given a 100 ft . long ramp that is constructed from the top of a 20 ft . wall to ground level, find the distance along the ground from the wall to the end of the ramp (to the nearest hundredth).

Flashback...
In order to determine whether or not a figure can be a triangle, we have to check that the sum of the two smaller sides
is greater
Flash-forward... than the $3^{\text {rd }}$ side. $\underbrace{a+b}_{\begin{array}{c}\text { smaller } \\ \text { sides }\end{array}}>C^{c}$ conger side
Pythagorean Inequalities Theorem: If $\triangle A B C, C$ is the length of the \qquad side.

$$
\begin{array}{lll}
\text { If } c^{2}=a^{2}+b^{2} \text {, then } \triangle A B C \text { is a } & \text { right } & \text { triangle. } \\
\text { If } c^{2}>a^{2}+b^{2} \text {, then } \triangle A B C \text { is an } & \text { obtuse } & \text { triangle. } \\
\text { If } c^{2}<a^{2}+b^{2} \text {, then } \triangle A B C \text { is } a n & \text { acute } & \text { triangle. }
\end{array}
$$

Directions: Tell if the measures can be side lengths of a triangle. If so, classify the triangle as acute, obtuse, or right.

Ex 1: 5, 7, and $\left(\begin{array}{c}\text { C } 10 \\)\end{array}\right.$
$1^{\text {st }}$ Is it $a \Delta ? \begin{aligned} & a+b>c \\ & 5+7>10\end{aligned}$ $5+7>10$
$12>10 \checkmark$
Ex 2: 8,11 , and 13

$$
\begin{array}{cc}
\text { s }^{s t} \Delta ? & 8+11>13 \\
19>130 \\
\text { yes! }
\end{array}
$$

Ex 3: 5, 8, and 17
$15^{+} \Delta 75+8>17$
$13 \ngtr 17$ no

$$
2^{\text {nd }} \text { Type } 13^{2} ? 8^{2}+11^{2}
$$

$$
169 ? 64+121
$$

$$
169<185
$$

Ex 4: 7, 10, and 12
$1^{\text {st }} \Delta ? 7+10>12$
$17>12 \mathrm{~V}$ yes
$2^{\text {nd }}$ Type: $12^{2} ? 7^{2}+10^{2}$ $144 ? 49+100$ $144<149$ Acute S

On a scale of 1 to 5 , where do you rate today's lesson?

