

5.7 The Pythagorean Theorem

Ex 3: Find the value of x.

a
$$a^{2} + b^{2} = c^{2}$$

 $a^{2} + 12^{2} = 15^{2}$
 $a^{2} + 144 = 225$
 $a^{2} = 81$
 $a = 9$
 c

Take it up a Notch!

Ex 5: Find the value of x.

Ex 4: Find the value of x. Leave answer as reduced radical.

Real Life Applications 😳

check:

Ex 7: Patrick needed to paint the windowsill. He placed a 10 foot ladder 3 feet away from the wall. Will the ladder reach the windowsill if it is 9.8 feet above the ground? Why or why not? (round to the nearest tenth)

The Ladder will be just short of reaching the window since the ladder will reach up to 9.5 fe and the windowsill 15 9.8 ft.

Ex 8: Given a 100 ft. long ramp that is constructed from the top of a 20 ft. wall to ground level, find the distance along the ground from the wall to the end of the ramp (to the nearest hundredth).

What if it is not a righ	t triangle? Or is it?!	```````````````````````````````````````
L Elash fam ward	ave to check that the sum of t Longer side	he two smaller sides
Flash-forward Pythagorean Inequalities Theorem: If ΔABC , c is the length of the _	longest	_side.
If $c^2 = a^2 + b^2$, then \triangle ABC is a	right	triangle.
If $c^2 > a^2 + b^2$, then \triangle ABC is a n	obtuse	triangle.
If $c^2 < a^2 + b^2$, then $\triangle ABC$ is a n_{2}	acute	triangle.

Directions: Tell if the measures can be side lengths of a triangle. If so, classify the triangle as acute, obtuse, or right. (c)

Theorem:

Converse of the Pythagorean

1 ^{6t} Isita	$\begin{array}{c} (7, and [0]) \\ & & (7, and [0]) \\ & & (5+7>10) \\ & & (12>10) \\ & & (12>10) \\ & & (12>10) \\ \\ & & (12>10) \\ & & (12>10) \\ \\ & & (12>10) \\ & & (12>10) \\ \\ & & (10>74) \\ \end{array}$	2nd Fyr 2	8, 11, and 13 ? 8+11>13 19>13~ Yes! pe' 13 ² ? 8 ² +11 ² 169 ? 64+121 169 < 185 Acute A	1 ^{s+} ∆7 51	3 \$17 no	let 7	4: 7, 10, and 12 ∆? 7 +10>12 17>12 ~ Yes ype: 12 ² ? 7 ² +10 ² 144 ? 49+100 144 < 149 Acute Δ	
On a scale	of I to 5, where do y	ou rate toda	y's lesson?					
		Yikes!		Kínd of got ít		I can do ít ín	my sleep!!!	
Simplifying	Radicals:	1	2	3	4	5		
Pythagorea	an Theorem:	1	2	3	4	5	Sad but true	