4.2/4.9-CUASSIFY TRIANGlES

1. Classify each of the following triangles by sides and angles.
a) Sides: Scalene

Angles: $\qquad$ Right
b) Sides: $\qquad$ Isosceles Angles: acute


If $\Delta d$, then $x$
2. Given $\triangle A B C: m \angle A=(9 x+20)^{\circ}, m \angle B=(3 x-5)^{\circ}$, and $m \angle C=(6 x+3)^{\circ}$.

Find the measure of each angle and classify the triangle by the angles and sides.

$$
\begin{gathered}
m \angle A+m \angle B+m \angle C=180 \\
9 x+20+3 x-5+6 x+3=180 \\
18 x+18=180 \\
x=9
\end{gathered}
$$

$$
m \angle A=9(9)+20=101^{\circ}
$$

Angles $\rightarrow$ OBtuse

$$
m \angle B=3(9)-5=22^{\circ}
$$

sIDes $\rightarrow$ scalene

$$
m \angle c=6(9)+3=57^{\circ}
$$

8. Given $\triangle Q R S \cong \triangle S T Q$. $R S=x^{2}+6, T Q=2 x^{2}+5, Q R=x^{2}+2$. Find $x$ and $S T$.

4.5/4.6- PROVING CDNERUENT HRRANGUES.

$$
\begin{aligned}
& \overline{R S} \cong \overline{T Q} \\
& x^{2}+6=2 x^{2}+5 \\
& 0=x^{2}-1 \\
& 0=(x+1)(x-1)
\end{aligned}
$$

$$
S T=Q R
$$

$$
\text { so... } Q R=x^{2}+2
$$

$$
\text { For } x=1 ; Q R=(1)^{2}+2
$$

$$
Q R=3
$$

$$
\text { For } x=-1 ; \operatorname{QR}=(-1)^{2}+2
$$

There are 5 ways to proving triangles congruent: and HL

$$
Q R=3
$$ $Q R=3$

9. Write the postulate or theorem that proves the triangles congruent. If they are not congruent, write not congruent.

a. $\qquad$ ASA

b. not $\cong$
c. AAS

d.

f.

10. Given : $\angle \mathrm{A} \cong \angle \mathrm{E}$

C is the midpoint of $\overline{A E}$
Prove: $\triangle \mathrm{ABC} \cong \triangle \mathrm{EDC}$
A

(4) $\angle A C B \cong \angle E C D(A)$
(5) $\triangle A B C \cong \triangle E D C$
(1 )Given
(2) Given
(3) If apt is a midpt, then $\div$ is
(3) $\overline{A C} \cong \overline{E C C}(S)$
(4) If $\operatorname{seg}$ in are vertical $2 \cong$ s, then $\angle s \cong$.
(5) ASA $(1,3,4)$
11. Given : $\overline{A D} \cong \overline{C D}$
$B$ is the midpoint of $\overline{A C}$
Prove: $\triangle \mathrm{ABD} \cong \triangle \mathrm{CBD}$
$\overline{(1)} \overline{A D} \cong \overline{C D}(S)$
(2) $B$ is midpt of $\overline{A C}$
(3) $\overline{A B} \cong \overline{C B}(S)$
(4) $\overline{D B} \cong \overline{D B}(s)$
(5) $\triangle A B D \cong \triangle C B D$
(1) Given
(2) Given
(2) If a pt is a midpt, thenit is seg into $2 \cong$ segs.
(4) Reflexive Prop.
(5)SSS $(1,3,4)$
12. Given : $\overline{F H}$ bisects $\angle \mathrm{GFJ}$ and $\angle \mathrm{GHJ}$

Prove: $\triangle \mathrm{GFH} \cong \triangle \mathrm{JFH}$

(2)fa seg bisects an $<$, then $\div s<$ into $2 \cong \angle S$
(3) Same as $\# 2$
(4) Reflexve Prop.
(5) ASA $(2,4,3)$
13. . Given : $\angle \mathrm{G} \cong \angle \mathrm{R}$

$$
\angle \mathrm{GFO} \cong \angle \mathrm{ROF}
$$

Prove: $\triangle \mathrm{FRO} \cong \triangle \mathrm{OGF}$

