Chapter 11 Volume Study Guide Part 2:

Volume of Prisms, Cylinders, Pyramids, Cones, Spheres and Composite Figures

Directions: Please show ALL work to justify your answer.

Name the 3-D Solid:

$V=A_{B} \cdot h$

$$
V=(50 \sqrt{3})(15)
$$

$$
v=750 \sqrt{3} \mathrm{in}^{3}
$$

$V=7$ in
Volume: \qquad $V=75 \sqrt{3}$ in 3
3)

Name the 3-D Solid: \qquad

\qquad
2)

Name the 3-D Solid:

\qquad $V=2700 \sqrt{3} \mathrm{in}^{3}$
4)

$$
\begin{aligned}
& V=\frac{A_{B} \cdot h}{3} \\
& V=\frac{(28 \cdot 28) \cdot 48}{3} \\
& V=12,544
\end{aligned}
$$

Name the 3-D Solid: Square Pyramid

6)

$$
V=\frac{A_{B} h}{3}
$$

$$
V=\frac{\left(6^{2} \pi\right)(6 \sqrt{3})}{3}
$$

$$
V=\frac{216 \sqrt{3 \pi}}{3}
$$

Name the 3-D Solid: \qquad $72 \sqrt{3} \pi$

Volume: \qquad
7)

$$
V_{S}=\frac{4 \pi r^{3}}{3}
$$

$$
\begin{aligned}
& =\frac{4 \pi 7^{3}}{3} \\
H S & =\frac{1372 \pi}{3} \cdot \frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
V_{H S} & =\frac{1372 \pi}{3} \cdot \frac{1}{2} \\
V & =\frac{1372 \pi}{6} \approx 2155.1
\end{aligned}
$$

Name the 3-D Solid: \qquad Hemisphere
Volume: \qquad

$$
=\frac{2048 \pi}{3} \approx 682.7
$$

9) What would happen to the volume of a cone if the height were doubled?

Volume:

$$
V=682.7 u^{3}=\frac{2049 \pi}{3} \approx 622.7
$$

8) Find the volume of a Sphere with a circumference of 16π.

$$
V=\frac{4 \pi 8^{3}}{3}
$$

The volume
world be reduced

by a factor of $\left(\frac{1}{3}\right)^{2}$ or $\frac{1}{9}$
11) The volume of a square pyramid is $1280 \mathrm{~cm}^{3}$ and the area of the base is $256 \mathrm{~cm}^{2}$. Find the base edge length, height and slant height of this figure.

$$
\begin{aligned}
V & =\frac{A_{B} \cdot h}{3} \\
3.1280 & =\frac{256 \cdot h}{2} \% \begin{array}{c}
\text { bedge }=16 \\
h=15 \\
\text { shh. }=17
\end{array} \\
3840 & =252 h \\
h & =15
\end{aligned}
$$

12) The volume of a cylinder is 1573π and the area of the base is 121π. Find the diameter and height of the cylinder.

$$
\begin{array}{cc}
A_{B}=\pi r^{2} & V=A_{B} \cdot h \\
121 k=\pi r^{2} & 1573 \pi=(121 t) h \\
\sqrt{121}=\sqrt{r^{2}} & 1573=121 h \\
r=11 & h=13
\end{array}
$$

$$
d=22
$$

13) Estimate the number of gallons required to fill a cylindrical tank that has a diameter of 40 feet and a height of 35 feet if 1 gallon of water is approximately $0.134 \mathrm{ft}^{3}$. Round your answer to the nearest tenth.

$$
\begin{array}{rl}
d=40 \\
r=20 & V A_{B} \cdot h \\
& =\pi \cdot 20^{2}(35) \\
V & =14,000 \pi
\end{array}
$$

$$
\begin{aligned}
& \frac{\text { gal }}{\mathrm{ft}+3} \rightarrow \frac{1}{0.134}=\frac{x}{43,982.3} \\
& 0.134 x=43,982.3 \\
& x=328,226.1 \mathrm{gal}
\end{aligned}
$$ her boxes for one month.

$$
\begin{aligned}
& X= \\
& 3 \text { feet. A s } \\
& \text { is a will p } \\
& 16 f^{3}
\end{aligned}
$$

$$
\begin{aligned}
1 b v x \rightarrow V & =A_{B} h & \frac{1075}{1 f^{3}}=\frac{x}{2 / 6 f^{3}} \\
& =(3.3)(3) & x=(0.75)(216)
\end{aligned}
$$

$8 \mathrm{Ww} \longrightarrow \mathrm{V}_{\text {tot }}=27 \cdot \mathrm{P}=216 f_{t^{3}}$
Find the volume of the following composite shapes. Round to the neatest hundredth if necessary.
15)

16)

$$
\begin{aligned}
& V_{\text {totele }}=100 \pi+83 \frac{1}{3} \pi \\
& =183 \frac{1}{3} \pi \\
& V_{+} \approx 57596 \mathrm{ftab}^{3}=320 \mathrm{u}^{3} \\
& V_{\text {Pyramid }^{\prime}}=\frac{A_{B} \cdot h}{3} \\
& V_{\text {prism }}=A_{B} \cdot h \\
& =\frac{8^{2} .3}{3} \\
& =8^{2} \cdot 4 \\
& V_{\text {prism }}=256 \\
& \begin{array}{ll}
=\frac{192}{3} \\
& =64
\end{array} \quad V_{\text {Tote }}=64+25 \\
& =320 n^{3}
\end{aligned}
$$

